Tecnologías

Con que máquinas puedes imprimir en Proto-Fast


Impresión por deposición de material fundido (FDM)

Esta técnica es considerada a menudo el método existente más sencillo. La tecnología de modelado por deposición fundida o FDM se basa en 3 elementos principales: una placa/cama de impresión en la que se imprime la pieza, una bobina de filamento que sirve como material de impresión y una cabeza de extrusión, también llamada extrusor. En resumen, el filamento es succionado y fundido por el extrusor de la impresora 3D, que deposita el material de forma precisa capa por capa sobre la cama de impresión.

Quien dice “impresión 3D” dice “modelo 3D”: todo comienza con el diseño del objeto utilizando algún software CAD (como SolidWorks, TinkerCAD o Blender, por ejemplo). El archivo 3D resultante, en su mayoría en formato .STL, se divide en varias capas utilizando un software denominado “slicer” (como Makerware, Cura o Repetier) en el que es posible seleccionar los distintos parámetros de a impresión. Una vez configurado todo, se puede iniciar la impresión.

La impresión 3D comienza cuando la maquina alcanza una temperatura alrededor de los 200°C, necesaria para la fusión del material. Entre los materiales de impresión 3D más populares en la deposición por fusión se encuentran el PLA (ácido poliacético) y el ABS (Acrilonitrilo butadieno estireno).

Una vez que se calienta la máquina, se extruye un filamento de material de 1,75 mm o 2,85 mm de diámetro sobre la plataforma a través de una boquilla que se mueve sobre 3 ejes x, y y z. La plataforma desciende un nivel con cada nueva capa aplicada, hasta que se imprima el objeto.

Durante la impresión, se pueden utilizar soportes para mejorar la calidad de ciertos modelos. Su función es apoyar las partes sobresalientes del modelo 3D, ya que hay ciertos modelos que sin apoyo es muy difícil que consigan ser impresos. Estos soportes pueden estar hechos del mismo material que el objeto impreso o en un material que sea soluble en agua o limoneno por ejemplo. Aunque es más complicado de manejar, algunas impresoras 3D están equipadas con varios extrusores para combinar varios colores o materiales (materiales de soporte en general).

Materiales compatibles con el modelado por deposición fundida

La impresión 3D  de depisición fundida  es compatible con una amplia variedad de polímeros termoplásticos: PLA y ABS, y también de policarbonato como, PET, PS, ASA, PVA, nylon, ULTEM y muchos filamentos compuestos que estén basados ​​en metal, piedra, madera. Esto ofrece interesantes propiedades mecánicas tales como conductividad, biocompatibilidad, resistencia a temperaturas o condiciones extremas, por mencionar algunos. Al reemplazar el extrusor de la impresora 3D con un sistema de jeringa, también es posible crear piezas de cerámica, arcilla o materiales alimenticios (como jarabe o chocolate). Para dar una idea del precio de los consumibles para impresoras 3D, un carrete de 1kg de filamento PLA es de unos 35 €.

Nuevos proyectos también han surgido con el deseo de ofrecer piezas policromadas que combinan miles de colores. La Da Vinci Color del fabricante XYZprinting, RoVa4D de Ord Solutions o la Palette+ de Mosaic Manufacturing , estas pueden combinar los filamentos de color con el fin de obtener toda la gama de colores CMYK (Cian, Magenta, Amarillo y Negro), y llegar a más de 10 millones de combinaciones de colores disponibles. Sin embargo, estas iniciativas siguen siendo relativamente nuevas.

 


Impresión por estereolitografía (SLA)

Al igual que con cualquier técnica de impresión 3D, se requiere un archivo digital en 3D. Esto se puede obtener a través del software CAD (SolidWorks, Sculpt o Maya, por ejemplo). Este archivo, a menudo en formato STL, se envía a la máquina, donde un segundo software (llamado slicer) realiza un corte del modelo en capas delgadas de impresión de un espesor fijo. Y dfinalmente se le da la orden a la impresora de comenzar a imprimir.

Entre los diversos componentes de una máquina de estereolitografía se encuentran una bandeja de resina, una plataforma móvil (eje Z), un sistema de raspado (eje X), un láser UV, óptica de enfoque y un espejo galvanométrico (ejes X e Y).

El rayo láser barre la superficie de la resina líquida de acuerdo con el modelo 3D digital suministrado a la impresora. Una vez que la primera capa de material solidificado, la plataforma desciende un nivel, que corresponde al grosor de una capa de impresión, y una nueva sección se solidifica. Hay tantos ciclos de impresión como capas hay para obtener el volumen completo de la pieza.

En algunos modelos de máquinas SLA (como en Formlabs, por ejemplo), la producción de la pieza se realiza en reversa. La plataforma se sumerge en la bandeja de resina después de cada capa solidificada mientras que el láser actúa de abajo hacia arriba.

Después de terminar la impresión, pasamos a la etapa de limpieza con un disolvente (generalmente alcohol isopropílico también conocido como isopropanol), esto es necesario para eliminar el exceso de resina no solidificada. A diferencia de otras técnicas tales como la sinterización selectiva por láser (SLS), la Deposición de Material Fundido (FDM) y la impresión PolyJet 3D, se requiere un  post-procesamiento  para finalizar el proceso de fotopolimerización y conseguir la maximiza fuerza del material.

Al igual que con la tecnología FDM, la estereolitografía utiliza el uso de soportes al imprimir formas complejas. En forma de andamios, que permiten soportar las partes que se precipitan en el vacío. Estos soportes son eliminados con facilidad durante el postproceso de los modelos.

La tecnología de estereolitografía ofrece un acabado superficial ligeramente vítreo, pero generalmente es superior a los procesos FDM o SLS (con el mismo espesor de capa). No es raro que las diferentes capas de impresión sean apenas visibles. Sin embargo, pocos colores están disponibles en SLA.

La tecnología SLA es la más utilizada para la creación de prototipos, en todas las áreas de la industria gracias a su velocidad, pero dependiendo de la calidad de la impresora, también es posible obtener piezas funcionales inmediatas. SLA también se utiliza para la producción de moldes de inyección o fundiciones, especialmente en el mundo de la joyería y la odontología.

La fundición a la cera perdida es un ejemplo de un proceso de fabricación indirecto que utiliza estereolitografía. Esta técnica milenaria ahora descansa en la impresión 3D de una réplica fiel del modelo final (también llamado maestro de joyería) en una cera calcinable. Una vez que se imprime la forma, se envuelve en un material refractario, creando el molde. Luego se vierte un metal fundido en el molde y viene a reemplazar la cera. Una vez despejado del molde, la parte metálica estará disponible.

Materiales compatibles con la estereolitografía

  • Resina alto impacto
  • Resina altas temperaturas
  • Resina calcinable para “cera perdida” – joyería
  • Resina dental